Prove that \(\sqrt{3} + \sqrt{5}\) is irrational.
 
Ans:
 
Let's prove \(\sqrt{3} + \sqrt{5}\) is an irrational number.
 
Now prove by contradiction method.
 
1. Assume \(\sqrt{3} + \sqrt{5}\)  is
2. Therefore, it can be written as
3. And \(p\) and \(q\) are
4
Squaring on both sides, we get
5. Simplifying the term,
6. This implies that,
7. This contradicts
our assumption
8. Thus, \(\sqrt{3} + \sqrt{5}\) is
Answer variants:
\((\sqrt{3} + \sqrt{5})^2 = \left(\frac{q}{p} \right)^2\)
an irrational number
\(\sqrt{15}\) is a rational number
\((\sqrt{3} - \sqrt{5})^2 = \left(\frac{p}{q} \right)^2\)
co-primes
\(\sqrt{3} + \sqrt{5}\)
\(\sqrt{15} =\)\(\frac{8p^2 - q^2}{2q^2}\)
\(\sqrt{3} + \sqrt{5}=\frac{p}{q}\) where \(p\), \(q\) are integers and \(q \neq 0\)
composites
contradicts
\(\sqrt{15}\) is an rational number
Satisfies
\(\sqrt{15} =\)\(\frac{p^2 - 8q^2}{2q^2}\)
\((\sqrt{3} + \sqrt{5})^2 = \left(\frac{p}{q} \right)^2\)
\(\sqrt{3} + \sqrt{5}=\frac{p}{q}\) where \(p\), \(q\) are integers and \(p \neq 0\)
a rational number
\(\sqrt{5} =\)\(\frac{p^2 - 8q^2}{2q^2}\)
\(\sqrt{3} + \sqrt{5}=\frac{p}{q}\) where \(p\), \(q\) are integers and \(q = 0\)